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ABSTRACT 

This report presents calculations of the forced shear layer studied experi- 
mentally by Oster and Wygnanski (ref. 1) and Weisbrot (ref.2). Two different 
computational approaches are examined: Direct Numerical Simulation (DNS) and 
Large Eddy Simulation (LES) .The DNS approach solves the full three-dimensional, 
Navier-Stokes equations for a temporally-evolving mixing layer, while the LES ap- 
proach (as used in this report) solves the two-dimensional, Navier-Stokes equations 
with a subgrid scale turbulence model. While the comparison between these calcu- 
lations and experimental data was hampered by a lack of information on the inflow 
boundary conditions the calcuations are shown to agree qualitatively with several 
aspects of the experiment. The sensitivity of these calculations to factors such as 
mesh refinement and Reynolds number is illustrated. 

NOMENCLATURE 

X = forcing wavelength 
60.zo = radial location where the flow reaches x percent of Urn 

INTRODUCTION 

Great interest has recently been directed toward the study of forced turbu- 
lent shear flows. Practically, the concern is with controlling the flow in order to 
achieve various desired results such as increased mixing. The hope is that through 
a knowlegable application of very low amplitude forcing (i.e. low energy input) one 
can significantly alter the flow development such that a large-amplitude effect is 
achieved. Currently our understanding of how these processes occur and how to 
manipulate them is increasing dramatically, but significant questions remain. To 
truely tap the potential of these processes requires an understanding of the basic 
physics of the flow field. Specifically, the interaction of vorticies of various scales 
must be more thoroughly understood. 



An excellent example of a flow field in which a wide range of vortices interact is 
the experiment of Oster and Wygnanski (ref. 1) and later Weisbrot (ref. 2). In this 
experiment a well-organized, periodic, large-scale motion is produced by forcing 
at a single frequency. This structure evolves and develops in a turbulent flow - 
extracting energy from, and later imparting energy to, the mean flow. The manner 
in which these large-scale structures interact with what is more commonly referred 
to as turbulence (small scale, random motions) yields a great deal of information 
on flow dynamics and provides a strong challenge to those interested in calculating 
these flows. 

In this report various numerical methods are examined in an attempt to nu- 
merically simulate the experiment of ref. 2. One computational approach solves 
the two-dimensional, time-dependent equations of motion with a two equation tur- 
bulence model. This approach, defined as a Large Eddy Simulation (LES) in this 
report, assumes that the large scale fluctuations in a shear layer are mainly two- 
dimensional and that the three-dimensional, random motions can be represented by 
a turbulence model. Two dimensional, laminar flow calculations are also presented 
- to compare and contrast with the LES calculations. The final computational ap- 
proach examined is Direct Numerical Simulation (DNS). With this approach the 
three-dimensional, Navier-Stokes equations are solved for a temporally evolving 
shear layer. Each of these various computational approaches has unique advantages 
and disadvantages. The purpose of this report is to examine whether, in ensemble, 
these computations can predict the major features of the excited shear layer. 

Computational Approach 

Large Eddy Simulations 

Several different computational approaches toward making time-accurate cal- 
culations are employed in this report. The first approach, referred to here as a Large 
Eddy Simulations (LES), solves the two-dimensional, Navier-Stokes equations with 
a two-equation turbulence model. The turbulence model is used to represent the 
non-periodic motion while the large scale motions are captured on a computational 
mesh. This methodoIogy follows the Deardorff approach which recognizes that the 
solution of the discretized equations using a finite volume algorithm is mathemat- 
ically equivalent to solving the original equations with a “box” type filter, ref. 3. 
The advantage of this approach is that the sub-grid scale turbulence model is sig- 
nificantly simpified. The (Leonard) stresses that arise through the use of a more 
general filter (for example- a Gaussian filter) are zero. This permits the use of 
a turbulence model that is simply a time-dependent form of the commonly-used, 
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Reynolds-averaged$ - t model, ref.4. There are some disadvantages to this ap- 
proach and reference 5 is recommended as a source detailling these issues. It is 
sufficient to state that, at this time, it is not clear that any significant penalties are 
incurred through the use of this approach. 

The numerical scheme used to solve the discretized equations is an implicit, 
incompressible flow algorithm. Flow variables are represented on a staggered-mesh 
with Crank-Nicholson time differencing and QUICK differencing (ref. 6) of the 
convective terms. This maintains second order accuracy in both time and space. 
Continuity is enforced through the iterative pressure-correction scheme SIMPLE 
(Semi-Implicit Pressure Linked Equations), ref.7. This code is described in detail by 
its originators in ref. 8 and the code has undergone extensive testing and evaluation 
in idealized benchmark problems, ref. 9, and numerous practical flow calculations. 
Modifications were made to the code to improve vectorization and a more efficient 
solver, employing the Stone’s strongly implicit algorithm combined with a block- 
correction, is used to solve the pressure-correction equation, ref. 10. 

In applying this code to the time-dependent shear layer calculations, the do- 
main extends from the transverse plane which is just at the trailing edge of the 
splitter plate (figure 1) and extends the full length of the experimental test sec- 
tion. Boundary conditions for u, v, k and t at the inlet are prescribed according 
to estimates of the experimental conditions. The upper and lower boundaries were 
treated as imposed symmetry conditions. Entrainment conditions are used at the 
flow exit, which amounts to fixing pressure, employing cell mass balance to obtain 
u and applying either a zero gradient condition for other variables when the flow is 
out of the domain or, when the flow is inward, the values for each quantity must be 
known and a fixed boundary condition is used. 

The strongest gradients in these calculations occur in the central region of the 
flow domain and have a dominant y - direction component. To accomodate these 
gradients one-third of the mesh points in the y direction are uniformly distributed 
in the central 10% of the domain. The remaining two-thirds are divided among 
the upper and lower portions with variable spacing so that a smooth transition is 
made at the interface. For the fine mesh calculations (798 x 241 grid points), grid 
point spacing was expanded 0.1 percent per grid cell in the axial direction. The 
expansion factor for the coarse mesh calculations (150 x 80) was 0.267 percent and 
the expansion factor for the 400 x 241 mesh calculations was 0.2 percent. These 
mesh points were distributed over a range of 0 -2000 mm in the X direction and 
-200 to +200 mm in the Y direction. 

The shear layer is known as a convectively unstable type of flow, ref. 11 This 
means that small perturbations upstream grow exponentially as they are convected 
with the flow. For this reason, it was recognized that the treatment of the inflow 
boundary condition was very important in establishing a correct comparison with 
experimental data. Unfortunately, detailed measurements near the splitter plate 

3 



were not available so that it was neccessary to estimate the thickness of the boundary 
layers as they left the splitter plate. A momentum thickness (6) estimate of 0.5 mm 
for the layer on each side of the splitter plate was inserted into an exponential 
profile: 

u = u, ezp(-y/6) ,6 = 26 
This profile was then oscillated in the y direction at the frequency and amplitude 
corresponding to experimental conditions. Various modifications to this boundary 
profile were tested, and without examining an infinite number of permutations, 
this profile was selected as reasonably representative of experimental conditions. 
But it is certainly true that the calculations are very sensitive to this boundary 
condition and it is appropriate here to emphasize the importance of documenting 
the details of the inlet flow for an experiment to provide useful information for 
testing calculations. 

Inlet conditions for the turbulence model were somewhat easier to establish. 
The experiment documented a streamwise turbulence intensity of around 0.2 per- 
cent, so k N ;,z = 4 ~ 1 0 ~ ~  m2/s2 is used. The length scale of the turbulence 
entering the test section was not documented, but can be estimated from the for- 
mula e = k3I2/Z using a length scale on the order of Z N 2mm. Fortunately, some 
test calculations indicate that the results are not sensitive to the precise value of e 
used, within a reasonable range. 

As noted previously, these are incompressible flow calculations wherein a per- 
turbation anywhere in the flow field can be “felt” everywhere else in the flow. 
Practically, what this requires is that the calculations be run for a long time period 
to allow the initinial conditions of the flow to be completely “flushed” through the 
computational domain until periodic flow behavior is reached. This is partially af- 
fected by the level of mass residual allowed in the iterative calculation, where the 
lower the residual, the faster the approach to periodicity. The laminar flow calcula- 
tions were much more sensitive to this effect and generally had to be run for longer 
flow times to reach periodicity. 

Laminar Flow Calculations 

These calculations are essentially the same as those noted above with the ex- 
ception of the turbulence model. In these calculations, only a constant molecular 
viscosity is used. This laminar viscosity is not intended as a subgrid scale turbu- 
lence model, but rather to constrast the effect of the two-equation model on the 
time-accuate calculations. The Reynolds number based on the mean convective 
velocity and the wavelength of forcing was 96000. 

Direct Numerical Simulations 

The term, Direct Numerical Simulation, as used in this report refers to the so- 
lution of the three-dimensional, time-dependent Navier-Stokes equations by a highly 
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accurate numerical scheme such that all the scales of motion are well-resolved on 
a computational mesh. This imposes two major restrictions on this computational 
scheme. First, although highly accurate spectral methods are used to solve the gov- 
erning equations, only a limited range of fluctuating motions can be resolved on the 
computational mesh. This restricts the calculations to a low Reynolds number flow 
(approximately 50 to 100 based on the Taylor microscale). When one applies the 
results of a low Reynolds number calculation to understand high Reynolds number 
turbulence, an inherent assumption is that the large energetic scales of turbulent 
motion display characteristics that are Reynolds number independent. The second 
major limitation of these Direct Numerical Simulations, is that the use of spectral 
methods (Fourier series) imposes the need to use periodic boundary conditions in the 
main flow direction. This means that these calculations are of a temporally-evolving 
shear layer as opposed to the spatially-evolving experiment. This comprises a La- 
grangian description of the spatially developing shear layer with the computational 
domain following the mean flow. The drawback that this imposes in comparisons 
with experimental data is offset by the increased numerical resolution available in 
the Lagrangian description of the flow. These time-evolving simulations should be 
looked at  as an “idealization” of the real flow. 

In comparing these temporal simulations to spatial experimental data, a trans- 
formation of the form X = X o  +U,t must be performed. Where U, is the convective 
velocity of the large eddies. The choice of Xo is somewhat arbitrary, so this was 
chosen to yield agreement with the first experimental data point documented in ref. 
2 and then held constant for the rest of the data. This issue is also discussed in ref. 
12. 

RESULTS AND DISCUSSION 

A schematic outline of the flow geometry and the main features of the forced, 
flow field are illustrated in figure 1. Intinially the shear layer is subject to very 
rapid growth due to the roll-up of vorticies scaling on the wavelength of the forcing. 
Somewhat further downstream, the roll-up process saturates and the shear layer 
stops growing. This is followed by a collapse of the layer width and then by a slow, 
secondary growth. These are some of the main characteristics of the flow field, 
documented in ref. 2, that will be compared against the numerical simulations. 

The results of two-dimensional, laminar flow calculations are displayed in fig- 
ure 2. In general, the calculations display the development of both positive and 
negative vorticity as the boundary layers leave the splitter plate and form large 
scale structures. The positive vorticity regions (dashed contours) result from the 
low speed boundary layer that is used as an inflow boundary condition. These are 
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rapidly dissipated. The mean flow gradient encourages the formation of negative 
vorticity, and the calculations indicate that this is the main component of vorticity 
in the flow field. 

The effect of grid resolution can be seen in the instantaneous vorticity contours 
in figures 2a and 2b. The coarse mesh calculation initially forms two small discrete 
vorticies that rapidly coalsce into one larger vortex, scaling on the wavelength of 
the periodic forcing. The fine mesh calculation initially forms many more smaller 
scale vorticies and approximately six of these vorticies slowly coalesce and merge 
into a single vortex structure very near the exit of the computational domain. The 
fine mesh calculation retains much higher levels of negative vorticity throughout 
the flow field. 

These marked differences between the fine and coarse mesh calculations indi- 
cate that the calcuations are not mesh independent. For at least the laminar flow 
calculations, it appears that mesh refinement yields very small scale detail that can 
significantly affect the development of the flow. Even the high level of mesh re- 
finement present in the 798 x 241 mesh calculation is probably insufficient to fully 
resolve this flow field. The inflow boundary conditions impose a point discontinuity 
in the velocity profile, providing a continuous source of ever smaller scale vorticity. 
The actual experimental values may not be this severe, but lacking experimental 
data, a definitive evaluation can not be made. 

The Reynolds stress field averaged over one cycle of the imposed forcing is 
displayed in figure 2c. The dashed lines indicate regions of negative Reynolds stress 
where the energy transfer is from the fluctuating motions to the mean flow: the 
so-called “inverse cascading” seen in forced flows. Small regions of negative stress 
appear first on the low speed side of the layer and then later on the high speed 
side. These small regions of negative stress are caused by individual, small vorticies 
changing their orientation with respect to the main flow. Downstream from these 
isolated pockets of negative stress, a large region of negative stress is formed due 
to the orientation of the whole vortex ensemble. This is the region where the layer 
undergoes a “collapse” and noticeably reduces in thickness. Downstream from the 
large region of negative stress, the flow alternates between positive and negative 
stress as the large scale, forced structure exhibits vortex nutation. 

The LES calculations are significantly different from the laminar flow calcula- 
tions as seen in figure 3. In general, the contours of vorticity display a much more 
organized (or smooth) flow pattern than the fine mesh, laminar flow calculations. 
The effective viscosity added by the turbulence model serves to damp-out most 
of the small scale features that form near the inflow boundary. The only remain- 
ing structure is the periodic structure associated with the forcing. This structure 
rapidly forms and then dissipates as it travels downstream. 

Figures 3a and 3b display the results of LES calculations for two different mesh 
densities. These results differ less than the laminar comparison, but still indicate 
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some grid dependency. It is interesting that the fine mesh calculation appears 
smoother than the coarse mesh calculation near the inflow boundary, Apparently, 
the reduction in numerical diffusion in the fine mesh calculation is more than offset 
by the increased turbulence generation produced by the model in response to sharper 
velocity gradients. 

The averaged Reynolds stresses (evaluated from the oscillatory component of 
motion) are shown in figure 3c. These stresses are much more uniform than in the 
laminar flow calculations. A large region of positive stress, near the inflow boundary, 
changes to low levels of negative stress further downstream. About half way through 
the flow field, the stresses become negative and remain largely unchanged until near 
the exit. In this region of the flow, the effect of the turbulence model has been to 
diffuse vorticity and thereby slow down the interaction between the vorticity and 
the mean flow. This changes the rate at which the stresses change sign. 

It should be remembered that the fluctuating motion in the LES calculations 
represents only part of the total turbulent kinetic energy in the calculation - the 
turbulence model supplies the rest. The magnitude of these two different compo- 
nents of the kinetic energy can be compared in the instantaneous profiles displayed 
in figures 3d and 3e. In general, the kinetic energy in the oscillatory motion is 
greater than that supplied by the turbulence model, especially in the middle of 
the flow domain. Near the inflow boundary, where mean gradients are quite steep, 
the turbulence model displays its highest levels of kinetic energy. Near the outflow 
boundary the kinetic energy associated with the turbulence model is of the same 
approximate level as that of the oscillatory motion. One interesting feature of the 
turbulence model kinetic energy is that local maximas are seen in regions of the flow 
commonly referred to as the braids. These are regions of intense shear that have 
been experimentally shown to be the source of counter-rotating, streamwise vor- 
ticies that are a major component of three-dimensional “random” turbulence, ref. 
13. It is certainly encouraging that the turbulence model qualitatively represents 
this trend. To establish whether this effect is quantitatively correct would require 
more detailed experimental measurements. 

A “close-up” comparison between these calculations and experimental data is 
shown in figures 4 , 5  and 6. Figure 4 compares the instantaneous vorticity contours* 
at axial locations around 200-560 mm. In this region of the flow, near the end of 
the splitter plate, the initial vortex roll-up is visable. Experimentally, the initial 
vortex displays a number of vorticity maximas (perhaps three or four) and the 
next vortex (around 440mm) displays two maximas. The laminar flow calculation 
displays many more vorticity maximas and especially the structure of the second 

* Contour levels were not documented in the experimental data. The computa- 
tional contour levels were chosen to reveal the main features of the flow and should 
not be expected to display the same density of lines as in the experiment. 
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vortex is markedly different. The LES calculation dissipates the small scale vorticies 
so that only a few maxima are seen (approximately one per structure). The LES 
calculation appears to show too little small scale structure while the laminar flow 
calculation shows too much. 

Figure 5 displays the instantaneous vorticity contours around axial locations 
of 560 - 840 mm. Again, as in the previous figure, the laminar flow calculation 
displays too much small scale structure. The LES calculation displays two, very 
smooth vorticies which is roughly in agreement with the experimental contours. 

Figure 6 displays the instantaneous vorticity contours around axial locations 
of 840 - 1780 mm. Again the laminar flow calculation displays too much small scale 
structure and, near the exit ( around 1700 mm), a double vortex structure is seen. 
In the LES calculations, the effect of dissipation can be seen through the decreasing 
density of the vorticity contours. A similar trend is seen in the experimental data 
with the exception that the large structure appears now to be composed of two, 
nearly vert ically-alined, vor t icies. 

From these various “close-up” comparisons, it appears as though the LES cal- 
culation is initially too dissipative near the inflow boundary or close to the splitter 
plate. Further on, in the free-shear region of the flow, the turbulence model appears 
to provide approximately the correct level of dissipation. This suggests that some 
mechanism may be needed to modify the dissipation rate equation such that the 
behavior in the near wake of the boundary layer is less dissipative. Essentially, the 
length scale calculation near the splitter plate needs to be different from that in the 
free-shear region. 

A comparison of calculated and experimentally measured mean axial velocity 
layer position as a function of downstream distance is shown in figure 7. Figure 
7a compares the two-dimensional LES and laminar flow calculations. In general, 
both computations grow rapidly in the initial portion of the flow field and appear 
to saturate at approximately the same point as the experimental data. The laminar 
calculations reveal saturation of several, small vorticies leading to the “bumpy” 
nature of the velocity layer growth. The LES calculation exhibits a very smooth 
velocity layer growth, but the sharp collapse of the layer, seen experimentally, is 
not reproduced in the calculation. Neither of the calculations appear to indicate 
the slow secondary growth on the low velocity side. 

Figure 7b compares DNS calculations made at two different initial Reynolds 
numbers with the experimental data*. The low Reynolds number results ( Re=250) 
compare quite favorably with the low speed side of the velocity profile. Unfortu- 
nately, the DNS results are symmetric about the centerline and cannot capture the 

* The DNS calculations were for a temporally-evolving layer. To compare with 
experimental data required a transformation between temporal and spatial variables 
as noted earlier. 
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difference between the high speed and the low speed sides of the layer. (It is not 
clear whether or not different initial conditions for these simulations might be able 
to pick up this asymmetric development of the layer. This remains a question for 
further research.) The higher Reynolds number results ( Re=500) are very similar 
to the low Reynolds number results except for near the end of the computations. 
These simulations exhibit a very strong growth rate instead of the slow, secondary 
growth, documented in the experiment. As will be shown in the next figure, this 
region of very strong growth is due largely to three-dimensional streamwise vorticies 
that lead to cascading energy towards smaller scales. The energy built up at  these 
smaller scales cannot be resolved on the computational mesh and, shortly after the 
period displayed in figure 7b, the calculation becomes unstable. This is a charac- 
teristic weakness of the DNS approach (as noted earlier), but the trends exhibited 
by the calculation should be valid. Fine-tuned initial conditions and a much finer 
mesh resolution might lead to improved agreement with experimental data. 

The energy content of various modes in the DNS calculations is shown in figure 
8 for the two different Reynolds numbers. The fundamental mode (the excited 
wave) and the 3D modes (streamwise vorticies) are the primary structures in this 
flow field. The fundamental mode grows rapidly early in the calculation and is 
largely unaffected by Reynolds number. Around a time of 10 seconds (or 600 mm) 
the fundamental mode saturates and then, generally, loses energy. In this region 
of energy loss for the fundamental mode, the 3D modes gain energy very rapidly. 
This trend is strongly affected by Reynolds number. Essentially what is occuring is 
that the 2D spanwise structure ( the fundamental mode) is strongly stretching the 
3D conter-rotating vorticies that form in the braid region of the flow. This feature 
of the flow is graphically documented in ref. 12. This growth of the streamwise 
structures causes a growth in the mean thickness of the shear layer. 

A comparison of calculated and experimentally measured Reynolds stresses is 
shown in figure 9. The various computational approaches display very different 
trends. In general, none of the calculations are quantitatively correct, although the 
DNS and the LES calculations always display the appropriate trend (or sign). The 
LES stresses are a combination of the stresses contributed by the oscillatory motion 
and the turbulence model. The turbulence model does not significantly contribute 
to the Reynolds stresses at x = 440 mm or x = 720 mm, but it is significant enough 
at x = 1700 mm to change the sign of the stresses from negative to positive. The 
LES calculations very closely match the experimental data at  x= 440 mm, but are 
in poorer agreement with the measurements downstream. The laminar calculations 
approximate the data at x= 440 mm, but again are in poorer agreement further 
downstream. The worst agreement is exhibited at x = 1700 mm by the laminar 
calculations where the sign of the stresses is incorrect. 

The experimental data also include information on the Reynolds stresses con- 
tributed by the large forced structure. This information was obtained by taking 
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measurements that were “phase-locked” on the frequency of forcing. The stresses 
contributed by the forced structure could then be separated from the total stresses 
that would be obtained from a long time-average. Figure 10 displays the “phased- 
locked” and total stresses measured experimentally at x= 1700 mm. These results 
are compared with the LES and DNS calculations. For the DNS calculations, the 
total stresses are presented for two different Reynolds numbers. The main difference 
in these two calculations is the strength of the 3D modes (or the streamwise vorti- 
cies) as seen in figure 8. At  the higher Reynolds number the streamwise vorticies 
are strong enough to cause the stresses to be significantIy positive. At the lower 
Reynolds number the stresses are so small as to effectively be zero across the layer. 
The LES calculations indicate that the stresses due to the oscillatory motion are 
negative, while the total stresses (a combination of the oscillatory motion stresses 
and the turbulence model stresses) are positive. While the LES results are in qual- 
itative agreement with the experimental results, the magnitude of the calculated 
stresses is much smaller than the experimental values. 

Concluding Remarks 

At this point it is appropriate to restate the question implicitly posed the 
introduction to this report: In ensemble, can the various computational approaches 
examined predict the major features of the excited shear layer? Lacking detailed 
measurements of the inflow boundary conditions, it is impossible to definitively 
answer this question. Certainly the initial growth and saturation of the shear layer 
are approximated by all calculations. The laminar and the LES calculations display 
very different small-scale behaviour, but the initial roll-up is largely dominated by 
the forced structure and all the calculations represent this feature. From this point 
in the flow, however, the DNS calculations indicate that small-scale, streamwise 
vorticies grow very rapidly. This transition from two-dimensional forced motion 
to three-dimensional and, eventually, rather random motion seems likely to be the 
cause of the slow secondary growth found experimentally. The LES calculations do 
display increased levels of turbulence kinetic energy in the braid regions where the 
streamwise structures originate, but this has no significant effect on the mean flow. 
The oscillatory motion dominates the stresses in the LES calculations up until very 
near the outflow. Near the outflow, the turbulence model significantly alters the 
stresses such that the negative stresses contributed by the oscillatory structure are 
made positive. Although this trend is in agreement with the experimental data, it is 
quantitatively too small to significantly affect the mean velocity profile and display 
some secondary growth. The DNS calculations may over-estimate the importance 
of the streamwise vorticies due to its inability to cascade energy to scales both larger 
than and smaller than the computational mesh. 
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The final point to be emphasized is the importance of mesh refinement. AI- 
though new supercomputers have made possible the fine mesh calculations reported 
here, it is likely that these results (at least for laminar flow) remain grid dependent. 
This grid dependency can strongly alter the calculated vorticity structure and the 
development of the flow. 
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FIGURE 3. - CWUTATIONAL RESULTS OF THE LES CALCULATIONS (400 X 241 GRID POINTS UNLESS NOTED). 
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(A) LAMINAR CALCULATIONS (798 x 241 GRID POINTS). 
(A) LAMINAR CALCULATION (798 x 291 GRID POINTS). 

(B) LES CALCUALTIONS (400 x 241 GRID POINTS). 

- 

x. nn 
(C) EXPERIKNT. 

FIGURE 4. - INSTANTANEOUS VORTICITY CONTOURS FOR THE TWO- 
DIKNSIONAL CALCULATIONS AND EXPERIKNTAL DATA AROUND 
AXIAL LOCATIONS OF 200 TO 560 M. 

(B) LES CALCULATION (400 x 291 GRID POINTS). 

x, nn 
(C) EXPERIKNT. 

FIGURE 5. - INSTANTANEOUS VORTICITY CONTOURS FOR THE TWO- 
DIKNSIONAL CALCULATIONS AND EXPERIPLNTAL DATA AROUND 
AXIAL LOCATIONS OF 560 TO 890 M. 



(A) LAMINAR CALCULATION (798 X 2 4 1  GRID POINTS). 
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(B) LES CALCULATIONS (400 x 241  GRID POINTS). 
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(C) EXPERIHENT. 

FIGURE 6. - INSTANTANEOUS VORTICITY CONTOURS FOR THE TWO- 
DIMENSIONAL CALCULATIONS AND EXPERIKNTAL DATA AROUND 
AXIAL LOCATIONS O f  8 4 0  TO 1780 M. 
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(A) LAMINAR AND LES CALCULATIONS. 
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(8) DNS CALCULATIONS FOR TWO DIFFERENT I N I T I A L  REYNOLDS 

-50 

NUMBERS (64  x 6 4  x 6 4  GRID POINTS). 

FIGURE 7. - COMPARISON OF CALCULATED AND EXPERINENTALLY 
MEASURED MEAN AXIAL VELOCITY AS A FUNCTION OF DISTANCE 
DOWNSTREAM. 
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FIGURE 8. - ENERGY CONTENT OF VARIOUS MOMS I N  THE 
DNS CALCULATIONS FOR TWO DIFFERENT REYNOLDS 
WWlBERS (64 x 64 x 64 GRID POINTS). 
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FIGURE 9. - COMPARISON OF CALCULATED AND EXPERIMENTALLY MEASURED REYNOLDS STRESSES AT SEVERAL AXIAL LOCATIONS. 
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( A )  DNS RESULTS. 

TOTAL STRESS 
STRESS DUE TO 

--- - 
UNSTEADY NOTION 

' 
11 0 .01 

($) 
(B) LES RESULTS. 

FIGURE 10. - TOTAL AND PHASE 
LOCKED REYNOLDS STRESSES 
(EXPERIENTALLY PEASURED A1 
x = 1700 nn) C W A R E D  WITH 
LES AND DNS CALCULATIONS. 
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